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In order to improve the accuracy of high-rate tracking of NASA’s DSN antennas,
the position-loop controller has been upgraded with a feed-forward loop. Conditions
for perfect and approximate tracking with the feed-forward loop are presented. The
feed-forward loop improves tracking performance and preserves wind disturbance
rejection properties of the previous closed-loop system.

Pointing accuracy of a proportional and integral (PI)
control system for the DSN antennas {1] is satisfactory
for slow-tracking antennas but significantly deteriorates
when tracking fast-moving objects. In order to improve
the tracking accuracy in the latter case, a PI control sys-
temn has been augmented with a feed-forward loop, as
shown with the block diagram in Fig. 1. In this diagram,
G,,G.,Gy, and G, denote transfer functions of the an-
tenna’s rate loop, PI controller, feed-forward gain, and
wind disturbance, respectively; and » is a command, y is
output (elevation and azimuth angles), e is tracking error
in azimuth and elevation, u is plant input, and w is wind
disturbance. The plant transfer function Gp(w) is a 2 x 2
matrix, with elevation and azimuth rates as inputs and
elevation and azimuth angles as outputs.

In order to analyze the impact of the feed-forward gain
on the closed-loop system performance, the transfer func-
tion from the command r and wind disturbance w to the
tracking error e was derived. From Fig. 1, one obtains

e=r—y (1a)

y=Gpu+ Guw (1b)
u=Gyr+Ge (1c)

Assuming I + G,G. to be nonsingular and denoting that
G, = (I + G,G,)™!, from Egs. (1a), (1b), and (1c), one
obtains

e =Go(I - GpGy)r — GoGuw (2)

From the above equation one obtains perfect tracking (i.e.,
e = 0) in the absence of wind disturbances for the feed-
forward gain G; such that

Gp(w)Gy(w) =1 3)

In the case of the DSN antennas, the condition (3) can
be satisfied in a certain frequency range only. Simply by
inspection of the magnitudes of the plant transfer function
in Fig. 2(a-d), one can see that for frequencies 0 < w < 27
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rad/sec (0 < f < 1 Hz), the plant transfer function G,
can be approximated with an integrator

Gp = Gpo = (jw) ', for 0 <w < 27 rad/sec (4)

Thus, the feed-forward differentiator
Gy = jwly (5)

will satisfy Eq. (3) in the frequency range 0 < w < 2«
rad/sec. In Fig. 2(a), the diagonal terms of the differen-
tiator transfer function of Eq. (5) are shown with dotted
lines. Their inverses (dashed lines) are equal to the plant
transfer function, as in Fig. 2 for frequencies up to 1 Hz.
The off-diagonal terms of Eq. (5) (transfer functions from
elevation command to azimuth position, and from azimuth
command to elevation position) should be zero; actually,
they are small for frequencies up to 1 Iz, as in Fig. 2(b)
and Fig. 2(d).

The closed-loop transfer functions for a system with
and without the feed-forward gain are compared in Fig. 3.
Figures 3(a) and 3(c) show that for frequencies up to
1 Hz, the system with the feed-forward gain has supe-
rior tracking properties when compared with the system
without feed-forward gain. This is confirmed by tracking
simulations with a trajectory like that in Figs. 4(a) and

4(b). The DSS-13 antenna, with the proportional gain
k, = 0.5, and the integral gain k; = 1.8 in azimuth and el-
evation, was investigated. The tracking errors in elevation
and cross-elevation are compared for the antenna with the
feed-forward loop (Fig. 5) and without the feed-forward
loop (Fig. 6). A significant improvement in tracking ac-
curacy for the system with the feed-forward loop was ob-
served, namely, from 73.1 to 1.4 mdeg in elevation, and
from 60.1 to 0.2 mdeg in cross-elevation. However, the
high-frequency components of the command are strongly
amplified for the system with feed-forward gain when com-
pared with the system without feed-forward gain. This
effect can be observed from the transfer function plots in
Fig. 3, where the resonance peaks of the system with feed-
forward gain are much higher than the ones of the system
without feed-forward gain. Also the intensive oscillatory
motion in the pointing error plots (see Fig. 5) is observed.
As a result, any sharp change in the command may cause
excessive vibrations of the antenna.

Despite the increased sensitivity to the command in-
puts, the disturbance rejection of the antenna with feed-
forward gain remains the same as that for the antenna
without feed-forward gain. This follows from Eq. (2),
where it is shown that the tracking error e due to wind
disturbance w is independent of the feed-forward gain Gy.
Thus the pointing errors due to wind gust disturbances
are comparable with the results obtained for the DSS-13
antenna with the PI controller (see [2]).
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Fig. 1. Antenna control system with the feed-torward loop.
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Fig. 2. Transfer functions of antenna rate loop model and of differentiator and integrator:
(a) elevation encoder 1o elevation Input; (b) azimuth encoder to elevation Input; (c) azimuth
encoder to azimuth input; and (d) elevation encoder to azimuth Input.
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Fig. 2 (contd).
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Fig. 3. Clesed-loop transfer functions—wilth feed-torward loop and without feed-forward loop:
(a) elevation encoder to elevation command; (b) azimuth encoder to elevation command; (c)
azimuth encoder to azimuth command; and (d) elevation encoder to azimuth command.
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Fig. 3 (contd).
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Fig. 4. Trajectory used for simulations: (a) in elevation and (b) azimuth.
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Fig. 5. Pointing errors for the control system with the feed-forward loop: (a) elevation error

and (b) cross-elevation error.
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Fig. 6. Pointing errors for the control system without the feed-torward loop: (a) elevation
error and (b) cross-elevation error.
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